You are here

Research From The Auk and The Condor

Subscribe to Research From The Auk and The Condor feed Research From The Auk and The Condor
The official blog of ornithology journals The Auk and The Condor
Updated: 25 min 35 sec ago

AUTHOR BLOG: A new hummingbird species in Ecuador

Wed, 09/26/2018 - 11:44

Elisa Bonaccorso

Linked paper: A striking, critically endangered, new species of hillstar (Trochilidae: Oreotrochilus) from the southwestern Andes of Ecuador by F. Sornoza-Molina, J.F. Freile, J. Nilsson, N. Krabbe, and E. Bonaccorso, The Auk: Ornithological Advances 135:4, October 2018.

Adult male (above left, center right), adult female (below), and immature male (above right) Oreotrochilus cyanolaemus. Image credit: P. Greenfield.

Last year a new hummingbird species was unexpectedly discovered on a seldom-visited mountain top in southern Ecuador. A brief visit to the rocky outcrops of Cerro de Arcos in the southern province of El Oro produced a photographic record that rang a bell: a mysterious immature male clearly assignable to the genus Oreotrochilus, the hillstars, which included six species at the time. A few days later, an adult male was captured in another photo, and a week after that, several males and females were observed and a handful collected for scientific purposes.

Such an outstanding discovery needed a thorough assessment to understand the taxonomic status and phylogenetic relationships of the putative new species and their evolutionary implications for the genus Oreotrochilus. This genus is remarkable in being the one that reaches the highest elevations: records above 4,500 meters, with a mean of 3,600 meters above sea level. As such, these hummingbirds need a very special set of physiological and behavioral adaptations to feed on the scarce nectar resources available. One plant in particular is extremely important for the hillstars—the spiny-leaved Chuquiragua, with its fire-orange flowers.

The newly discovered hillstar of southern Ecuador is not an exception in its feeding associations. In fact, its geographic range seems to be shaped by the availability of Chuquiragua in a very restricted region between the geographic ranges of the Ecuadorian Hillstar, Oreotrochilus chimborazo, found in Ecuador and extreme southern Colombia, and the Green-headed Hillstar, Oreotrochilus stolzmanni, found in Peru and extreme southern Ecuador.

The latter species is likely the closest relative to the new species, sharing an overall plumage pattern and being very similar genetically. But a single striking characteristic sets them apart: the Green-headed Hillstar has a glittering lime-green throat patch, or gorget, whereas the gorget in the new species is a glittering deep blue. Given that gorgets are likely used in courtship displays by males, the strikingly different color suggests that reproductive isolation is effectively segregating these taxa.

Being extremely restricted in distribution, confined to a few mountain tops where habitat degradation is dramatic, the conservation status of this new hillstar seems critical. No conservation projects exist across its tiny range; on the contrary, the agricultural boundary is progressing, cattle graze free in the few natural grasslands that remain, burns are frequent every windy summer, and not a few mining concession cover the area. Urgent research and conservation actions are on the way, but there is little time left.

Newly Discovered Hummingbird Species Already Critically Endangered

Wed, 09/26/2018 - 10:21

A male Blue-throated Hillstar. Photo credit: F. Sornoza-Molina

In 2017, researchers working in the Ecuadorian Andes stumbled across a previously unknown species of hummingbird—but as documented in a new study published in The Auk: Ornithological Advances, its small range, specialized habitat, and threats from human activity mean the newly described Blue-throated Hillstar is likely already critically endangered.

Hillstars are unusual among hummingbirds—they live in high-elevation habitats in the Andes and have special adaptations to cold temperatures. Francisco Sornoza-Molina of Ecuador’s Instituto Nacional de Biodiversida, first observed and photographed a previously unknown hillstar during fieldwork in southwest Ecuador in April 2017. After this first expedition, Sornoza-Molina engaged fellow researchers Juan Freile, Elisa Bonaccorso, Jonas Nilsson, and Niels Krabbe in the study of this possible new species, returning in May to capture specimens and confirm the finding. They dubbed the new species Oreotrochilus cyanolaemus, or the Blue-throated Hillstar, for its iridescent blue throat.

The Blue-throated Hillstar is found only along bush-lined creeks in an area of about 100 square kilometers, and the researchers estimate there are no more than 750 individuals, perhaps fewer than 500. Threats to its habitat include fire, grazing, and gold mining, and it meets the criteria to be considered critically endangered. “Complete support from national and international conservation agencies is needed in order to save this species,” says coauthor Francisco Sornoza-Molina. “The action plan for the conservation of this bird is creating a network of protected areas along its geographic range.”

“The hillstar hummingbirds occur in the most rugged, isolated, and inaccessible parts of the Andes, where they roost in caves, forage on the ground, and spend half their lives in hypothermic torpor, so the discovery of a new species in this group is incredibly exciting. This striking discovery confirms that life in the high Andes still holds many secrets to be revealed,” according to the University of New Mexico’s Christopher Witt, a hummingbird expert who wasn’t involved in the study. “The location is fitting for a new species of hillstar, because it’s a remote, high mountain range that is isolated and is sandwiched between the ranges of two other hillstar species. The authors did a thorough job comparing the new form to its relatives in every respect.”

A striking, critically endangered, new species of hillstar (Trochilidae: Oreotrochilus) from the southwestern Andes of Ecuador is available at

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology published by the American Ornithological Society. The Auk commenced publication in 1884 and in 2009 was honored as one of the 100 most influential journals of biology and medicine over the past 100 years.

Improving “Silvopastures” for Bird Conservation

Wed, 09/19/2018 - 10:34

Black-crowned Antshrikes are among the insectivorous birds that forage less efficiently in silvopasture habitat. Photo credit: B. Tarbox

The adoption of “silvopastures”—incorporating trees into pastureland—can provide habitat for forest bird species and improve connectivity in landscapes fragmented by agriculture. But how do silvopastures measure up to natural forest habitat? New research from The Condor: Ornithological Applications shows that birds in silvopasture forage less efficiently than those in forest fragments but offers suggestions for how silvopasture habitat could be improved.

The University of Florida’s Bryan Tarbox and his colleagues observed the foraging and flocking behavior of insect-eating birds in silvopastures on farms in the Colombian Andes between 2013 and 2015. They found that silvopastures were less structurally complex than forest fragments, with fewer and smaller trees, a sparser understory, and less diversity of tree species. Birds in silvopastures attacked insects less often, were less selective about where they foraged, and were less likely to join mixed-species flocks. Flock members attacked prey more frequently than solitary birds in forest fragments, but not in silvopastures, suggesting that something about silvopasture habitat negated the benefits of joining a flock.

The results show that silvopasture habitat could be improved by managing for higher tree species diversity and greater structural complexity, but that preserving natural forest fragments in agricultural landscapes is also crucial. “I hope people don’t get the impression that our results mean silvopastures aren’t a good idea,” says Tarbox. “The existing literature makes it clear that silvopastures are beneficial for biodiversity conservation. I think the big takeaway here is the importance of getting to the details of how specific land uses impact particular species or functional groups, so that we can figure out the best regional configurations of land use, given the competing needs of wildlife and agriculture.”

“Protected areas alone will be insufficient to conserve biodiversity at global scales. Instead, we must find ways to safeguard species and ecosystems while also sustaining human communities and livelihoods that depend upon local resources,” according to Cornell University’s Amanda Rodewald, an expert on bird responses to human land use who was not involved with the research. “In their study of insectivorous forest birds, Tarbox and his colleagues report that Andean silvopastures provided low quality foraging habitats and, as such, may fail to support resident and migratory birds as well as forest fragments. Fortunately, the study points to several strategies, such as planting preferred tree species and creating specialized microhabitats, that can be implemented at local and regional scales to improve suitability of silvopastoral habitats for birds.”

Foraging ecology and flocking behavior of insectivorous forest birds inform management of Andean silvopastures for conservation is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology, published by the American Ornithological Society. For the past two years, The Condor has had the number one impact factor among 27 ornithology journals.

Newly Identified African Bird Species Already in Trouble

Wed, 09/19/2018 - 10:34

A Mountain Sooty Boubou. Photo credit: J. Engel

Central Africa’s Albertine Rift region is a biodiversity hotspot consisting of a system of highlands that spans six countries. Recent studies have shown that the population of sooty bush-shrikes occupying the region’s mid-elevation forests is a distinct species, and new research from The Condor: Ornithological Applications reveals that this newly discovered species may already be endangered due to pressure from agricultural development.

The newly identified mid-elevation species has been dubbed Willard’s Sooty Boubou, as opposed to the previously recognized high-elevation species, the Mountain Sooty Boubou. The Field Museum’s Fabio Berzaghi (now with the CEA Laboratory for Sciences of Climate and Environment in France) and his colleagues used museum records and bird survey records to analyze the ecological niche occupied by each species, and their results confirm that there is very little overlap between the ranges of the two species—Willard’s Sooty Boubou is found at approximately 1200–1900 meters and the Mountain Sooty Boubou at 1800–3800 meters. In Burundi, Rwanda, and Uganda, 70% of the potential for Willard’s Sooty Boubou lies outside of protected areas and has been converted to agriculture, and the numbers for the Democratic Republic of Congo are only slightly better.

Willard’s Sooty Boubou joins several other imperiled bird species that depend on the region’s mid-elevation forests, which have been largely overlooked by conservation efforts. “The Albertine Rift is a crossroads of amazing biodiversity, dramatic and diverse landscapes, and heartbreaking social and political unrest. It goes from glaciers to volcanoes to plateaus to lakes, with a succession of vegetation types from high-elevation cloud forests to lowland tropical forests,” says Berzaghi. “It is home to gorillas and forest elephants as well as a high number of endemic animal and plant species. Unfortunately, much of the region has gone through never-ending conflicts, with very negative consequences for both humans and biodiversity, and conservation involving local populations is paramount.”

“This paper provides additional data in support of the recognition of Willard’s Sooty Boubou as a species distinct from Mountain Sooty Boubou. Clarification of the niche that Willard’s Sooty Boubou occupies, that of mid-elevation forests, distinct from the higher-elevation Mountain Sooty Boubou, is important, because these habitats are among the most heavily impacted in Africa from agriculture,” according to UC Berkeley’s Rauri Bowie, an expert on African birds who was not involved in the study. “Conservation agencies have an opportunity to move beyond taxonomic debate and use the models derived from this species to improve conservation outcomes for not only this species, but also a broad set of mid-elevation Albertine Rift endemic vertebrates through protection of mid-elevation forests that have received relatively little protection in comparison to high-elevation montane habitats.”

Comparative niche modeling of two bush-shrikes (Laniarius) and the conservation of mid-elevation Afromontane forests of the Albertine Rift is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology, published by the American Ornithological Society. For the past two years, The Condor has had the number one impact factor among 27 ornithology journals.

AUTHOR BLOG: “Bird-in-the-middle”—a mid-elevation tropical species stuck in limbo

Wed, 09/19/2018 - 10:34

Fabio Berzaghi & John Bates

Linked paper: Comparative niche modeling of two bush-shrikes (Laniarius) and the conservation of mid-elevation Afromontane forests of the Albertine Rift by F. Berzaghi, J.E. Engel, A.J. Plumptre, H. Mugabe, D. Kujirakwinja, S. Ayebare, and J.M. Bates, The Condor: Ornithological Applications 120:4, October 2018.

A search through the tropical forest literature for “mid-elevation forests” reveals relatively few results compared to a search for high-elevation or lowland forests, and looking at a map of protected areas and land cover in mountainous tropical regions makes it clear why. For example, in the African Albertine Rift, most national parks tend to be in high elevation areas where slopes are steep and land conversion for human use is more difficult. As we move down the slopes, the habitat starts degrading until we arrive in the lowlands, where almost no intact habitat remains, particularly on the eastern side of the Rift.

In 2010, Voelker et al. described a new species of bush-strike, the Willard’s Sooty Boubou (Laniarius willardi), and noticed that this species occurs at lower elevations than its sister species, the Mountain Sooty Boubou (Lanarius poensis). We were thus wondering how much habitat was left for this mid-elevation species, knowing that in this region lower-elevation forests are degraded or have been converted to agriculture. Using niche modeling and land cover data, we discovered that these two species of birds reside at different elevations across a small portion of montane Africa, overlapping only in part. Unfortunately, the habitat for L. willardi has been greatly reduced, because mid-elevation forests are outside protected areas and national parks. L. willardi may not be able to move to higher elevations, as its preferred environmental conditions are between 1200 and 1900 meters; a large portion of its suitable habitat is found in the Democratic Republic of the Congo’s Itombwe Plateau, technically a protected area but problematic to protect.

The plight of L. willardi is probably similar to that of many other mid- and low-elevation species in the area. Even though our results are not such good news for birds and other mid-elevation species in the region, we also want to highlight the importance of scientific collaborations with local researchers and conservation units. These collaborations help us define habitats and species in need of attention. Importantly, the authors of our study are a combination of Africans and non-Africans, with a range of research foci including ornithology and conservation but also niche modeling and bioinformatics. The data used in our study are based on both museum specimens (historical and modern) and modern field observations, which were carried out by teams that always included African students and scientists from the countries where the data were collected. Conservation can only be successful in the long run if in-country capacity for conservation science is developed around the world.

The discovery of L. willardi and its description were made possible through modern scientific collection during collaborations between local Albertine Rift ornithologists and the Field Museum. Data from such modern collections will help clarify lingering concerns in the taxonomic community (particularly Birdlife International and the IUCN) in regards to the status of these two species relative to other black boubous occurring far to the west in the Cameroonian Highlands. Work like this has great value, because it allows highlighting issues of conservation concern at both regional and local scales. Each region of the Albertine Rift has its own history and ongoing issues with deforestation, instability and protection. There is no “one size fits all” solution to conservation in the Albertine Rift, but this paper helps emphasize that there is regional expertise in the form of researchers and conservation professionals who will make a difference. Opportunities to work with international colleagues to combine conservation and science, as in this paper, will be instrumental in building efforts to protect the incredible biota of this wonderful region.

Mini Video Cameras Offer Peek at Hard-to-Observe Bird Behavior

Wed, 09/12/2018 - 09:56


Fledging behavior—when and why baby birds leave the nest—is something scientists know very little about. Rarely is someone watching a nest at just the right moment to see fledging happen. To get around this, the researchers behind a new study from The Auk: Ornithological Advances deployed miniature video cameras to monitor over 200 grassland bird nests in Alberta, North Dakota, Minnesota, and Wisconsin, and they found that fledglings’ decision-making process is more complex than anyone guessed.

Christine Ribic from the U.S. Geological Survey and her colleagues tested two competing hypotheses about fledglings’ decision making. Birds might leave the nest early in the day to maximize the amount of time they have to find a safe place to hide from predators before nightfall. Alternatively, once their siblings start to leave, the remaining birds might decide to stay in the nest longer to take advantage of reduced competition for the food their parents provide, resulting in spread-out fledging times. Video data analyzed by Ribic and her colleagues showed that the more siblings in a nest, the longer it took for all of them to fledge, consistent with the idea that some young may stay behind to take advantage of reduced competition after the first nestlings leave. Ribic and her co-authors discovered that 20% of nests took more than one day to completely finish fledging. Fledging behavior also varied between species and over the course of the breeding season, for reasons that remain unclear.

As they decide when to fledge, the nestlings of grassland birds are balancing two competing demands. On one hand, staying in the nest longer gives them more time to grow and develop before facing the risky outside world. On the other hand, predation risk might increase with time spent in the nest.

“It was exciting to see events naturally occurring in an area of avian biology where very little is known, and was only possible due to the use of video surveillance systems,” says Ribic. “It seems fledging is more complex than we previously thought. We were surprised by the span of time over which grassland bird species fledge, with some species starting to fledge in the early morning and others closer to noon, and by the frequency of fledgings that spanned multiple days.”

“Considerable research attention has focused on the breeding biology of birds, but until recently some events have been difficult to observe. Luckily, decreases in the size and cost of video equipment have allowed researchers to study these hard-to-observe events, such as the brief moments when a predator causes a nest to fail. This study took things a step further to begin exploring the point in time when young birds fledge from the nest,” adds the University of Illinois’s T.J. Benson, an expert of bird nesting behavior who was not involved in the study. “There are relatively few existing ideas for what influences the timing of nest departure by young birds, and Ribic and her colleagues put forth an interesting idea about the potential role of food availability in influencing fledging. Use of video technology to examine nest predation has become widespread, and this paper provides a great example of the other interesting aspects of breeding biology that can be examined in such studies.”

Diel fledging patterns among grassland passerines: Relative impacts of energetics and predation risk is available at

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology published by the American Ornithological Society. The Auk commenced publication in 1884 and in 2009 was honored as one of the 100 most influential journals of biology and medicine over the past 100 years.

AUTHOR BLOG: What time do baby birds leave home?

Wed, 09/12/2018 - 09:56

Christine Ribic

Linked paper: Diel fledging patterns among grassland passerines: Relative impacts of energetics and predation risk by C.A. Ribic, C.S. Ng, N. Koper, K. Ellison, P.J. Pietz, and D.J. Rugg, The Condor: Ornithological Applications 120:4, October 2018.

A Grasshopper Sparrow chick leaves its nest. Credit: C. Ribic, USGS

We know that human kids grow, mature, and gradually move towards a life that is independent of their parents’ home.  The same is true for baby birds: they also have to decide when the time is right to leave the nest and start on their journey to independence. This seems to involve a balancing act between making sure they are big and healthy enough to survive independently, while leaving the nest quickly to avoid predators. Nests are busy places where chicks beg for food and parents are constantly coming and going with food deliveries. All of this activity could easily draw predators to the nest! The timing of chicks leaving the nest (fledging) isn’t well understood, particularly for birds that live in grasslands, many of which are threatened or endangered due to habitat loss.

Our new research focused on a variety of grassland songbirds, such as meadowlarks, sparrows, and longspurs. We found that the time baby birds leave the nest has more to do with having enough food (energetics) than avoiding predators. This is surprising because research on birds nesting in shrubs says that risk of predation is the most important thing affecting when chicks leave the nest. This suggests that nests in grasslands (hidden on the ground with protective cover from surrounding grasses and a few low shrubs) face different risks than nests placed in shrubs.

We found that grassland chicks can start to leave anytime throughout the day and when they leave depends on what species they are. Some chicks, like Clay-colored Sparrow and Grasshopper Sparrow, usually left the nest in the early morning, while Eastern Meadowlark and Chestnut-collared Longspur left closer to mid-morning. But sometimes chicks delayed leaving until the afternoon, with their siblings waiting until the next day to depart. The time it takes for all the chicks to leave a nest can be several hours to more than a day! Maybe some chicks are taking advantage of their siblings’ early departures to get more food and attention from mom and dad before they finally leave, too.

Measuring fledging time can be tricky because chicks run in and out of the nest multiple times before leaving for good. We don’t know why they do this; maybe they are exploring their world and gaining confidence before leaving to brave the world outside their home. Remember these birds have only been alive for a week and a half or so!  Regardless, it’s a bit like kids going off for college but returning for school breaks … nestlings may leave and return repeatedly before fully fledging. Fledging is not nearly as simple as people think it is!

Understanding the fledging process allows us to better understand the biology of grassland birds. Learning about the pressures they face in their daily lives lets us understand what threats they face and how those threats may change as people alter grasslands. Grassland birds are declining more than birds of any other habitat type across North America. Research like this is part of understanding why they are declining and what we can do to help them recover.

“Live Fast, Die Young” Lifestyle Reflected in Birds’ Feathers

Wed, 09/05/2018 - 13:53

A museum specimen ready to be photographed. Photo credit: R. Terrill

Animals’ lives tend to follow a quicker tempo as they get farther from the equator—birds at more northern latitudes mature faster, start reproducing younger, and live shorter lives, probably as a way of dealing with seasonal variation in resources. A new study from The Auk: Ornithological Advances shows for the first time that this pattern also plays out in birds’ feathers, with northern birds completing their annual molt faster to keep up with the demands of life far from the tropics.

Louisiana State University’s Ryan Terrill looked at museum specimens of four bird species with ranges that span a wide swath of latitude in both the Northern and Southern Hemispheres. Slight differences in feather growth between day and night during birds’ annual molt produce visible pairs of light-colored bars, each pair representing 24 hours’ growth. Terrill could determine the rates at which individual feathers grew by measuring their spacing. He found that for all four species, individuals collected at higher latitudes had grown their feathers faster.

Terrill sees two potential explanations for this pattern, which aren’t mutually exclusive. First, where the availability of food changes with the seasons, birds may need to molt faster so that they have the necessary resources. Second, because birds at higher latitudes tend to be more invested in producing offspring than in extending their own survival, faster production of lower-quality feathers may be an acceptable tradeoff.

“Working with museum specimens was a lot of fun,” says Terrill. “One of my favorite things about museum specimens is using them in ways that other folks might not consider, and especially using them in ways for which the original collector couldn’t have known they might be useful. It wasn’t until recently that many people considered that how feathers grow might be important for birds or realized that you could measure feather growth rates on specimens, and I hope this study will publicize yet another way that museum specimens are useful for understanding birds.”

“Most aspects of avian molt, with the exception of feather-replacement sequence, are thought to be rather flexible. The timing, location, and extent of molts appear to respond quickly to environmental constraints, even within populations of the same species occurring at different latitudes, as either permanent or winter residents,” adds the Institute for Bird Population’s Peter Pyle, an expert on bird molt patterns who was not involved with the study. “Yet molt strategies remain vastly understudied compared to other avian topics such as breeding, migration, and behavioral responses. This paper shows that a fourth component of molt, feather growth rate, also appears to vary, with equatorial populations showing slower molt intensity than those of higher latitudes. The author ties this nicely in to other studies suggesting a decelerated pace of other life history traits in less seasonal environments, perhaps as a function of slower basal metabolic rates.”

Feather growth rate increases with latitude in four species of widespread resident Neotropical birds is available at

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology published by the American Ornithological Society. The Auk commenced publication in 1884 and in 2009 was honored as one of the 100 most influential journals of biology and medicine over the past 100 years.

AUTHOR BLOG: Count me in! I am available for detection at 6 AM on May 26th

Wed, 08/29/2018 - 15:08

Péter Sólymos

Linked paper: Evaluating time-removal models for estimating availability of boreal birds during point count surveys: Sample size requirements and model complexity by P.  Sólymos, S.M. Matsuoka, S.G. Cumming, D. Stralberg, P. Fontaine, F.K.A. Schmiegelow, S.J. Song, and E.M. Bayne, The Condor: Ornithological Applications 120:3, August 2018.

Point count survey duration rarely changes within projects but varies greatly among projects. As more and more large-scale studies are compiling and analyzing point count data from disparate sources, standardization becomes critical, because count duration greatly affects observations. The Boreal Avian Modelling (BAM, project aims to further continental scale avian conservation through the integration and analysis of point count data collected across northern North America. In order to estimate population density and population size for landbird species, data integration became a real issue for us.

Two of the main sources of variation in the observed counts have nothing to do with ecological variables of interest, such as land cover and climate, but rather are considered nuisance variables. These are point count radius and point count duration. Recognizing that most studies do not follow survey protocol recommendations aimed to facilitate data integration (see e.g. Matsuoka et al. 2014), we opted to use model-based techniques to place our variable data on a common footing.

We first tackled standardizing for varying point count radii through distance sampling (Matsuoka et al. 2012) and eventually combined this with a removal model-based correction for varying point count duration. We named the method QPAD, referring to terms of our statistical notation: probability of detection (q), probability of availability (p), area surveyed (A) and population density (D) (Solymos et al. 2013). In the present paper we assessed different ways of controlling for point count duration. As the title indicates, we performed a cost-benefit analysis to make recommendations about when to use different types of the removal model.

We evaluated a conventional removal model and a finite mixture removal model, with and without covariates, for 152 bird species. We found that the probabilities of predicted availability under conventional and finite mixture models were very similar with respect to the range of probability values and the shape of the response curves to predictor variables. However, finite mixture models were better supported for the large majority of species. We also found overwhelming support for time-varying models irrespective of the parametrization.

So what is a finite mixture model? In our case, it splits the population of birds present at a location into frequent and infrequent singers. In previous parametrizations, researchers assumed that the singing rate of the infrequent group varies with date and time, whereas frequent singers remain frequent singers independent of time of year or time of day. We compared this to an alternate parametrization that assumes that individuals change behaviour over time and switch from frequent to infrequent singing behaviour—so it is the proportion of the two groups that varies. We found that the latter assumption was favoured.

Finite mixture models provide some really nice insight into how singing behaviour changes over time and, due to having more parameters, they provide a better fit and thus minimize bias in population size estimates. But all this improvement comes with a price: Sample size requirements (or more precisely, the number of detections required) are really high. To have all the benefits with reduced variance, one needs about 1000 non-zero observations to fit finite mixture models—20 times more than needed to reliably fit conventional removal models. This is much higher than previously suggested minimum sample sizes.

All of our findings indicate that lengthening the count duration from 3 minutes to 5-10 minutes is an important consideration when designing field surveys to increase the accuracy and precision of population estimates. Well-informed survey design, combined with various forms of removal sampling, is useful in accounting for availability bias in point counts, thereby improving population estimates and allowing for better integration of disparate studies at larger spatial scales. To this end, we provide our removal model estimates as part of the QPAD R package and the R functions required to fit all the above outlined removal models as part of the detect R package. We at the BAM project and our collaborators are already utilizing the removal model estimates to correct for availability bias in our continental and regional projects to inform better management and conservation of bird populations. Read more about these projects in our annual report.

A Better Way to Count Boreal Birds

Wed, 08/29/2018 - 15:08

Common Yellowthroats are among the birds for which new statistical models could provide better population estimates. Photo credit: C. Kolaczan

Knowing approximately how many individuals of a certain species are out there is important for bird conservation efforts, but raw data from bird surveys tends to underestimate bird abundance. The researchers behind a new paper from The Condor: Ornithological Applications tested a new statistical method to adjust for this and confirmed several mathematical tweaks that can produce better population estimates for species of conservation concern.

The University of Alberta’s Péter Sólymos and his colleagues tested a type of mathematical model called a “removal model” using bird count data for 152 species from the Boreal Avian Modelling Project, or BAM, which covers a vast area of Canada, Alaska, and the northeastern U.S. They found that incorporating variation in birds’ singing behavior improved models’ accuracy—how likely birds are to sing changes over the course of the day and the year, affecting how easy they are to detect. Extending the length of individual bird counts from three or five minutes to ten minutes was also beneficial.

“The chances of spotting something—a coin on the pavement, a bear in the mountains, or the apricot jam in the freezer—increases with effort,” explains Sólymos. “The more we walk, travel, look, or listen, the more things we find, but there is also a tradeoff between the number of places one can do a search and the length of the searches. Such decisions drive how long field biologists conduct bird counting at a given place. In our study, we looked at how the duration of counting influenced finding different bird species at different times of the day and the year. We also wanted to find the best way of how to standardize for different count durations and how to use these findings to provide better estimates of bird population sizes.”

This is more than just a math problem, however—accurate estimates of population size can be crucial for effective bird conservation, and many of the boreal bird species this study looked at are experiencing severe declines. This new approach offers a way to combine data from surveys that weren’t standardized in their design. “Population size of different species is one of the key metrics that affects their conservation importance, but estimating population size is a very challenging task that involves numerous assumptions,” says Sólymos. “Besides the ability to hopefully provide more accurate population size estimates, our modeling approach and findings can also help in timing of bird surveys to maximize the number of species detected.”

“While the authors of this study present the results of a rigorous comparison of modeling techniques to achieve better estimates of bird abundance from point counts, they also provide clear and simple recommendations on how and when to apply their findings to any study that expects to use time-interval point counts,” adds Jeff Wells, Science and Policy Director of the Boreal Songbird Initiative, who was not involved in the research. “This is a rich contribution not only to avian research methodology, but in the long run, also to bird conservation.”

Evaluating time-removal models for estimating availability of boreal birds during point count surveys: Sample size requirements and model complexity is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology, published by the American Ornithological Society. For the past two years, The Condor has had the number one impact factor among 27 ornithology journals.

How Does Agriculture Affect Vulnerable Insect-Eating Birds?

Wed, 08/29/2018 - 15:08

Tree Swallow with prey. Photo credit: C. Michelson

Aerial insectivores—birds that hunt for insect prey on the wing—are declining across North America as agricultural intensification leads to diminishing insect abundance and diversity in many areas. A new study from The Condor: Ornithological Applications looks at how Tree Swallows’ diets are affected by agriculture and finds that while birds living in cropland can still find their preferred prey, they may be working harder to get it.

The University of Saskatchewan’s Chantel Michelson, Robert Clark, and Christy Morrissey monitored Tree Swallow nest boxes at agricultural and grassland sites in 2012 and 2013, collecting blood samples from the birds to determine what they were eating via isotope ratios in their tissues. Tree Swallows usually prefer aquatic insects, which they capture in the air after they emerge from wetlands to complete their life cycles. The researchers suspected that birds living in crop-dominated areas would be forced to shift to eating more terrestrial insects, due to the effects of insecticide use and other agricultural practices on wetland habitat.

Instead, they found that swallows were eating more aquatic than terrestrial insects at all sites, and in 2012 it was actually the grassland birds whose diet contained a higher proportion of terrestrial insects. The results suggest that wetland habitat may provide a buffer against the negative effects of agriculture. However, birds living in cropland weighed less on average than their grassland-dwelling counterparts—a sign that they may be struggling.

“We set up this study to see if insectivorous swallows would be disadvantaged in agricultural croplands by shifting their normally aquatic diet to terrestrial insects to compensate for lower food availability. We were surprised that the birds did not generally do this,” says Morrissey. “Adult swallows in particular were heavily reliant on aquatic prey regardless of land use type. At the grassland dominated site, in fact, they fed their nestlings a wider variety of prey from both aquatic and terrestrial origin. Diet did not seem to influence body condition, but birds in cropland sites were lighter on average which may signal they are working harder in croplands to obtain their preferred aquatic prey. This work shows how important wetlands are for maintaining birds in agricultural landscapes and these are important reservoirs for conserving biodiversity in an otherwise heavily altered landscape.”

“Grasslands are one of the most imperiled ecosystems on the planet because their rich soils are ideal for agriculture. Pesticides and fertilizers are applied in ever-increasing quantities, which has serious implications for organisms that live there,” adds Acadia University’s Dave Shutler, an expert on Tree Swallow ecology who was not involved with the study. “This study compared the diets of Tree Swallows in natural grasslands and croplands, each of which had roughly similar wetland densities. Although diet composition was similar in both areas, it appears that diet quality was better in the natural grasslands, because birds there were heavier and in better condition than those in the cropland.”

Agricultural land cover does not affect diet of Tree Swallows in wetland dominated habitats is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology, published by the American Ornithological Society. For the past two years, The Condor has had the number one impact factor among 27 ornithology journals.

Woodpeckers and Development Coexist in Seattle

Wed, 08/22/2018 - 09:41

Pileated Woodpeckers peek from a tree cavity. Photo credit: J. Tomasevic

The two largest woodpeckers in North America, the Imperial Woodpecker and Ivory-billed Woodpecker, are believed to have gone extinct during the twentieth century. Can their surviving cousin, the Pileated Woodpecker, persist when standing dead trees and other crucial resources are lost to urbanization? A new study published by The Condor: Ornithological Applications tracked birds in suburban Seattle and found that as long as tree cover remains above a certain threshold, Pileated Woodpeckers and housing developments can coexist.

The University of Washington’s Jorge Tomasevic (now at the Universidad Austral de Chile) and John Marzluff trapped and radio-tagged 16 Pileated Woodpeckers at 9 sites with varying degrees of urbanization in suburban Seattle. Tracking each bird for about a year, they found that Pileated Woodpeckers used not only forested areas such as parks, but also lightly and moderately urbanized areas where some trees had been retained, taking advantage of resources such as backyard birdfeeders.

These results show that retaining at least 20% forest cover, including standing dead trees, over large suburban areas may help sustain Pileated Woodpeckers and perhaps even other species tied to them. Despite potential risks from threats such as feral cats and collisions with windows, the researchers believe that cities can play an important role in the conservation of biodiversity.

“You’d think that such large bird would be easy to find, especially when carrying a transmitter, but they did a very good job hiding,” says Tomasevic. “It was also very challenging to work in populated areas. I have so many anecdotes, good and bad, about dealing with people and people dealing with me doing my work. Some people were very friendly, but some were a little nervous with me walking around the neighborhood. I tried to look as official as possible, with University of Washington logos on my jacket, and I created a website for the project and printed some business cards. It was a great opportunity to do outreach, and I’m still friends with some of the neighborhood residents.”

“As suburban sprawl becomes more and more ubiquitous, it’s imperative that we consider which specific yard features can be promoted to share our neighborhoods with wildlife,” according to the University of Delaware’s Desiree Narango, an expert on avian urban ecology. “This paper is a nice example showing that even a mature forest specialist can use and navigate the suburban landscape if we provide the resources they need: large trees and some retained wooded areas.”

Use of suburban landscapes by the Pileated Woodpecker (Dryocopus pileatus) is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology, published by the American Ornithological Society. For the past two years, The Condor has had the number one impact factor among 27 ornithology journals.

AUTHOR BLOG: The real story behind murres’ pear-shaped eggs

Wed, 08/22/2018 - 09:41

Tim Birkhead

Linked paper: The pyriform egg of the Common Murre (Uria aalge) is more stable on sloping surfaces by T.R. Birkhead, J.E. Thompson, and R. Montgomerie, The Auk: Ornithological Advances 135:4, October 2018.

For the past six years, Jamie Thompson, Bob Montgomerie, and I have tried to understand why murres produce a pear-shaped (pyriform) egg.

It started one evening in 2012 when I watched a well-known TV presenter take a murre’s egg from a tray of birds’ eggs in a museum. “The reason it is this shape,” he said, “is so that if it is knocked, it will spin on its axis rather than rolling off the cliff ledge.” He demonstrated this by spinning the egg.

I was appalled. That idea was nonsense and had been dismissed over a century earlier. Yes, if you take an empty eggshell you can indeed lie it on its side and spin it like a top on its side. But a murre egg full of yolk, albumen, and a developing embryo will not spin like that without undue force.

Having offered to send the presenter the papers pointing out why the spinning-like-a-top idea was wrong, I had a sudden crisis of confidence, and decided I had better re-read those papers myself.

I soon realized that the more widely accepted view — that a pyriform egg rolls in an arc and thereby minimizes the risk that it will fall off the breeding ledge — was not very convincing either. The rolling-in-an-arc idea gained support initially by some experiments in the 1960s using model eggs (made from plaster of Paris). But it was later found that model eggs simply do not roll like real eggs. Subsequent experiments with real murre eggs provided no convincing evidence for the rolling-in-an-arc idea, either.

What’s more, incubating murres invariably orientate their egg with its pointed directed up the slope towards the cliff edge, so that if the egg does roll, it will roll out to the edge. If the purpose of the pyriform egg was to prevent it from rolling off the ledge, then it would more sensible for the parent to orientate the egg the other way.

We decided to re-investigate, thinking explicitly about the selection pressures that might influence the shape of a murre’s egg.

We had two ideas. First, murres are poor flyers that breed at high density. As a result, crash landings onto incubating birds are common, so perhaps a pyriform shape confers greater strength and resilience against impacts. That proved to be a difficult idea to test.

Our second idea rested on the observation that murre ledges are filthy with excrement. Perhaps the pyriform shape enables an egg to keep its blunt end clean such that the pores for air exchange do not become blocked. We found that the density of pores on the blunt end of the egg was relatively high and, if you look at the distribution of dirt on murre eggs, most of it is on the pointed end. These results are consistent with the dirt hypothesis. However, it wasn’t clear whether avoiding dirt or avoiding damage from impacts were sufficiently strong selection pressures to have produced the shape.

Then, while climbing on murre ledges in 2017, I had a sudden thought. Perhaps the pyriform shape allows a murre’s egg to rest stably on the sloping ledges that murres often breed on. I had fresh murre eggs and Razorbill eggs (which are much less pointed and more elliptical in shape) to hand, and I tried placing them on a 30o rock slope. The murre egg rested there immediately; the razorbill rolled off and, indeed, there was no way I could position the Razorbill’s stably on that slope.

My colleague Jamie was climbing with me, so I called him over, said “Watch this!”, and demonstrated again. Same result. Then, together with Bob Montgomerie, we devised a series of tests to establish just how stable murre and Razorbill eggs are across a range of egg shapes on slopes of different steepness. We quantified egg shape using a new approach (Biggins et al 2018). We then conducted two experiments, one using a moving slope and the other using three static slopes at 20o, 30 o and 40 o. We tested to see at what angle each egg would begin to roll on the moving slope and how successful we were at stably positioning each egg on the static slopes.

The results are clear. The more pyriform the egg, the more stable and less likely to roll out of place it is. Our results are NOT about how an egg will roll when it becomes unstable, but about whether it begins to roll in the first place, either when knocked or during changeovers. Our results indicate that the stability of a pyriform egg also makes it easier and safer for murres to manipulate (with their beak, wings and feet) their eggs during incubation and change-overs.



I started studying Common Murres (common guillemots in the UK) Uria aalge in 1972, on Skomer Island, off the coast of Wales, UK.  I have kept that study — whose main thrust is population monitoring — going ever since:

The video describing our murre egg study is here:

Tim Birkhead academic website:


Other relevant papers:

Biggins, J. D., Thompson, J. E. & Birkhead, T. R. 2018. Accurately quantifying the shape of birds’ eggs. Ecology and Evolution 8: in press.

Birkhead, T. R. 2017. Vulgar errors — the point of a Guillemot’s egg. British Birds 110: 456-467.

Birkhead, T.R., Thompson, & J. E., Biggins, J. D. 2017. The point of a guillemor’s egg. Ibis 159: 255-265.

Birkhead, T. R., Thompson, J. E. & Biggins, J. D. 2017.  Egg shape in the common guillemot Uria aalge and Brunnich’s guillemot U. lomvia: not a rolling matter? Journal of Ornithology 158: 679-685.

Birkhead, T.R., Thompson, J. E., Biggins, J. D. & Montgomerie, R. 2018.  The evolution of egg shape in birds: selection during the incubation period. Ibis, in press.

Arctic Seabird Populations Respond to Climate Change

Wed, 08/15/2018 - 09:56

Alaska’s Black-legged Kittiwakes are among the seabird species impacted by climate change. Photo credit: Marc Weber, USFWS

Seabirds such as gulls can be key indicators of environmental change as their populations respond to shifts in their ocean habitat over time. A new study from The Auk: Ornithological Advances investigates how several species have responded to changing environmental conditions in the Arctic over the last four decades. The authors find that a warming ocean is directly and indirectly affecting seabird populations in Alaska.

The University of Idaho’s Holly Goyert (now at the University of Massachusetts) and her colleagues used mathematical models to explore relationships between large, long-term datasets covering climate fluctuation, zooplankton abundance and distribution, and populations of several seabird species in the waters off Alaska from 1974 to 2014. They found that declines in populations of an Arctic gull called the Black-legged Kittiwake are tied to deteriorating zooplankton productivity, while their cousins the Red-legged Kittiwakes, also declining, are more sensitive to warming ocean surface temperatures. Not every seabird is in trouble, though—Common and Thick-billed Murres, relatives of puffins, have proved resilient to changing conditions and may even be benefitting.

This study is the first attempt to explain how climate and habitat variability affect seabird population dynamics across such a large scale. “Our hope is that these results will be used in a proactive approach to seabird conservation, and that measures will be taken to prevent populations from declining to small sizes. For example, although Black-legged Kittiwakes are one of the more abundant gulls in the world, their populations are undergoing significant declines, which calls their global status into question,” says Goyert. “Our paper suggests that the deterioration of food web resources such as krill, which is related to warming oceans, has contributed to these declines.”

“Mass seabird deaths and breeding failures in recent years have the scientific community puzzled, and both appear to be climate-related,” according to Melanie Smith, Audubon Alaska’s Director of Conservation Science, who was not involved in the study. “This study is an important step in clarifying the effects of changing climate on seabird population dynamics across Alaska. We can use what we’ve learned here to design detailed monitoring and to better anticipate population declines, improving managers’ ability to protect vulnerable species.”

Effects of climate change and environmental variability on the carrying capacity of Alaskan seabird populations is available at

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology published by the American Ornithological Society. The Auk commenced publication in 1884 and in 2009 was honored as one of the 100 most influential journals of biology and medicine over the past 100 years. The Auk has the #1 average Journal Impact Factor for the past 5 years for ornithology journals.

Where Do Crows Go in Winter?

Wed, 08/08/2018 - 09:58

A crow with a satellite transmitter. Photo credit: M. Jones

“Partial migration”—where some individuals within a population migrate and some don’t—is common among birds and is speculated to be a step on the evolutionary path to complete, long-distance migration, but scientists know very little about how it actually works. A new study from The Auk: Ornithological Advances tracks where American Crows go during the winter and shows that while individuals are consistent in whether they migrate or stay put, partial migration might give them enough flexibility to adapt to changing environmental conditions.

Hamilton College’s Andrea Townsend and her colleagues captured crows in large winter flocks in Utica, New York, and Davis, California, fitting them with satellite transmitters to track their movements and collecting blood and feather samples. Their data show that 73% of western crows and 86% of eastern crows migrated at least some distance to breed, with an average journey of around 500 kilometers. Birds returned faithfully to the same breeding territory each year, and whether or not individuals migrated was consistent from one year to the next—they didn’t switch strategies depending on environmental conditions. However, they were flexible in where they spent the winter.

This information can serve as an important baseline for tracking how crows’ migratory behavior is affected by factors including climate change and urbanization. Urban “heat islands,” as well as general warming trends, could lead more birds to shorten their migration and spend the winter closer to their breeding territory. “If you live in a place, usually a city, with a huge winter flock of crows, you are seeing migratory birds that came south for the winter as well as your local, year-round crows,” says Townsend. “Personally, I find the sight of an 8000-crow roost exhilarating, but if they or their feces are driving you crazy, you can at least take comfort in knowing that most of them will disappear in early March.”

“It is surprising how much remains unknown about the seasonal movements of most partial migrant species, and this is especially true for variability among populations,” adds the Smithsonian Migratory Bird Center’s Emily Cohen, an expert on migration patterns who was not involved with the study. “This kind of information about populations-specific annual movements is not trivial to collect, but is fundamental to understanding most aspects of the evolution and ecology of species.”

Where do winter crows go? Characterizing partial migration of American Crows with satellite telemetry, stable isotopes, and molecular markers is available at

About the journal: The Auk: Ornithological Advances is a peer-reviewed, international journal of ornithology published by the American Ornithological Society. The Auk commenced publication in 1884 and in 2009 was honored as one of the 100 most influential journals of biology and medicine over the past 100 years. The Auk has the #1 average Journal Impact Factor for the past 5 years for ornithology journals.

Mapping Endangered Red Knots’ Remote Breeding Habitat

Wed, 08/01/2018 - 13:13

A nesting Red Knot. Photo credit: M. Peck

The rufa subspecies of Red Knot travels from its breeding grounds in the Canadian Arctic to its winter habitat in South America and back each year, an incredible 15,000 kilometers each way. Its numbers have fallen precipitously in recent decades, and with such a broad range, determining what’s behind the shorebird’s decline is a huge challenge. A new study from The Condor: Ornithological Applications examines Red Knot nesting habitat preferences across the Arctic and determines that while there is plenty of breeding habitat to support today’s population, climate change could pose a threat in the future.

Rutgers University’s Richard Lathrop, Conserve Wildlife Foundation of New Jersey’s Larry Niles, and their colleagues attached radio tags to 365 knots captured while migrating through Delaware Bay in 1999–2006. To learn where and in what sort of habitat the tagged birds nested, they then conducted surveys via small airplane across the south and central Canadian Arctic, a vast study area spanning from Victoria Island in the west to Baffin Island in the east. They also carried out detailed ground-based surveys on Nunavut’s Southampton Island. Across both scales, knots preferred to nest in sparsely vegetated areas on sedimentary bedrock, near but not directly adjacent to the coast or interior wetlands, to which they commute in order to forage.

The study shows that there are more than 74,000 square kilometers of suitable rufa Red Knot habitat across their Central Arctic breeding range—enough space for at least that many breeding pairs, assuming one square kilometer of territory per nest. Since the entire population currently numbers only around 42,000 individuals, it’s unlikely that a lack of available breeding habitat is contributing to the species’ decline; knots’ problems must lie elsewhere. However, suitable breeding conditions for a number of Arctic shorebirds, including knots, are predicted to shift and decline in coming decades due to climate change. An understanding of species–habitat relationships will be crucial for present and future conservation efforts.

“It took many person-hours over many years of intensive field surveys to find the several dozen occupied Red Knot nests that we located and documented. The area we aerially searched for radio-tagged birds spanned over 1700 km in length, the same distance as from Georgia to Maine,” says Niles.

Lathrop adds, “Using the power of satellite remote sensing, data mining analysis, and geospatial modeling, we were able to extrapolate from the field and radio-telemetry surveys to map potential nesting habitat for these birds across wide expanses of the Canadian Arctic. These same tools and techniques could be applied to advance our knowledge about other Arctic-nesting shorebirds.”

“Implementing effective conservation actions for long-distance migrant birds often involves the systematic elimination of insignificant factors to identify important biotic and abiotic contributors to population dynamics,” according to Brad Andres, National Coordinator for the U.S. Fish and Wildlife Service’s Shorebird Conservation Plan, who was not involved in the study. “For the first time, Lathrop and his colleagues have described environmental conditions conducive for nesting by rufa Red Knots and provide evidence that breeding ground habitats are likely not limiting the recovery of the population. Their work also furnishes a baseline to evaluate the ability of a changing Arctic climate to provide breeding habitat for this shorebird of high conservation concern.”

Mapping and modeling the breeding habitat of the Red Knot, Calidris canutus, at landscape and regional scales is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology, published by the American Ornithological Society. For the past two years, The Condor has had the number one impact factor among 27 ornithology journals.

AUTHOR BLOG: Newly discovered crossbill species numbers few

Wed, 08/01/2018 - 13:13

Craig W. Benkman

Linked paper: Habitat associations and abundance of a range-restricted specialist, the Cassia Crossbill (Loxia sinesciuris) by N.J. Behl and C.W. Benkman, The Condor: Ornithological Applications 120:3, August 2018.

A female Cassia Crossbill.

Based on the size and structure of the lodgepole pine cones and the abundance of crossbills in the South Hills and Albion Mountains, Idaho, that I observed on the way to a joint AOU and COS meeting in Boise in 1996, I told several colleagues at the meeting that I might have discovered a new form of crossbill. Although they were skeptical, over the years my students and I have found that this crossbill is engaged in a coevolutionary arms race with the pine, favoring an increase in seed defenses directed at the crossbills. This has caused the crossbill to diverge and speciate into what we now call the Cassia Crossbill (Loxia sinesciuris).

Restricted to the lodgepole pine atop two small ranges on the northeast edge of the Great Basin Desert, this bird was of clear conservation concern, especially given the forecasts of lodgepole pine disappearing from the region late in this century. This became all the more troubling as we watched the Cassia Crossbill population plummet by over 80% between 2003 and 2011. The decline was related to an increase in hot summer days (>32°C or 90°F; 8 days in 2003, 3 in 2005, 4 in 2006, and 4 in 2007) that caused many of the normally closed cones of lodgepole pine to open and shed their seeds, much like they would if there was a stand-replacing fire. Such seeds are lost to Cassia Crossbills, which rely on seeds in the older, closed cones as they weather and gradually become available throughout the year. Fortunately, hot summer days have been few since 2007, allowing the crossbill population to rebound. However, given its restricted range, apparent small population size, and vulnerability to higher temperatures, we needed an estimate of their global population size and habitat preferences to inform and guide us. Nate Behl did just that work for his master’s thesis, and it appears in the article “Habitat associations and abundance of a range-restricted specialist, the Cassia Crossbill (Loxia sinesciuris)” in The Condor: Ornithological Applications.

Cassia Crossbills occupy about 70 km2 of lodgepole pine forest and number only ~5,800 birds. Thus, at the population nadir in 2011 there were probably about 1,500 Cassia Crossbills. That is worrisome, especially given the forecasts for more extreme temperatures later in this century. Nate also found that Cassia Crossbills occur more commonly in larger, mature stands of lodgepole pine on the cooler north-facing slopes where large numbers of seeds can accumulate in closed cones. This makes sense, but the outlook for the continued accumulation of seeds in closed cones in the canopy is bleak. More hot summer days are projected, along with increasing fire frequency, preventing pine from reaching the ages most productive for the Cassia Crossbill.

Agricultural & Urban Habitat Drive Long-Term Bird Population Changes

Wed, 07/25/2018 - 09:29

Chipping Sparrows have expanded their distribution in Illinois by taking advantage of urban habitats. Photo credit: M.K. Rubey

Land use changes are a major driver of species declines, but in addition to the habitat to which they’re best adapted, many bird species use “alternative” habitats such as urban and agricultural land. A new study from The Condor: Ornithological Applications documents a century of land use change in Illinois and shows that species’ long-term fate can depend on the availability and suitability of these alternative habitats.

Between 1906 and 1909, a pair of ornithologists crisscrossed the state of Illinois, creating a unique record of its avian inhabitants across grassland, forest, urban, and agricultural habitats. The University of Illinois Urbana-Champaign’s Michael Ward and his colleagues recreated this survey as closely as possible between 2006 and 2008 and used the data to create mathematical models of bird occupancy, assessing how things had changed over the course of the twentieth century. They found that birds’ use of alternative habitats had changed more than their use of primary habitats: the 40 species in their analysis that expanded their occupancy did so by making more use of urban habitats, while the 26 that decreased did so because they were making less use of agricultural habitats. Urban habitats have become more bird-friendly in the past century as vegetation has matured and bird feeding has become more popular. Agriculture, on the other hand, has seen a shift from small, diversified farms to vast corn and soybean monocultures managed with heavy herbicide and pesticide use.

“We need to understand how species use and respond to changes in not only their primary habitat, but also habitats that they only use occasionally. Species that can take advantage of alternate habitats can expand their populations,” says Ward. “Understanding which species can or can’t take advantage of these alternative habitats will allow us to better predict which species need conservation efforts. Urban habitats are the habitats in which many species have been increasing, and the general public, by providing small bits of habitat in their backyards, have the opportunity to help a range of species.” Species that have been declining, on the other hand, may rebound if agricultural practices change to become more wildlife-friendly.

“When trying to explain changes in population size and distribution, biologists often look first to changes in the habitats that are most closely associated with a species. This study demonstrates that these ‘primary habitats,’ as termed by the authors, do not necessarily drive population changes,” adds the Cornell Lab of Ornithology’s Amanda Rodewald, an expert on birds’ response to land use who was not involved in the study. “Rather, the extent to which a species uses novel or alternative habitats such as urban areas might better explain patterns. One key implication for conservation is that tracking species within alternative habitats may help biologists to understand, anticipate, and potentially mitigate population changes.”

Changes in bird distributions in Illinois, USA, over the 20th century were driven by use of alternative rather than primary habitats is available at

About the journal: The Condor: Ornithological Applications is a peer-reviewed, international journal of ornithology, published by the American Ornithological Society. For the past two years, The Condor has had the number one impact factor among 27 ornithology journals.

The American Ornithological Society to partner with Oxford University Press to publish The Auk and The Condor

Wed, 07/18/2018 - 10:10

Big news! Beginning in 2019, The Auk and The Condor will be moving to a new publishing partner, Oxford University Press. Read the full announcement here:

AUTHOR BLOG: Ancient Fossil Bones of a Recently Extinct Cormorant

Wed, 07/11/2018 - 10:01

Junya Watanabe

Linked paper: Pleistocene fossils from Japan show that the recently extinct Spectacled Cormorant (Phalacrocorax perspicillatus) was a relict by J. Watanabe, H. Matsuoka, and Y. Hasegawa, The Auk: Ornithological Advances 135:4, October 2018.

Live reconstruction of the Spectacled Cormorant from study skins. Artwork by Joseph Wolf, from Elliott (1869), The New and Heretofore Unfigured Species of the Birds of North America, Volume 2.

Numerous extinction events have taken place in geologically recent time, caused to varying degrees by human activity. Although relatively much is known about how humans have given “final blows” to animal species in recent history, little is known about the long-term biogeographic and evolutionary history of extinct animals. This is where archaeological and fossil records play crucial roles. One of the most (in)famous examples of historic extinctions is the case of the Great Auk, which was once widespread in the North Atlantic Ocean but was driven to extinction in the mid-19th century due to hunting by humans. There is one potential parallel, though less widely known, in the North Pacific Ocean; a large seabird species called Spectacled Cormorant (Phalacrocorax perspicillatus) was driven to extinction almost contemporaneously. This species was first discovered in the 18th century on Bering Island, part of the Commander Islands, by German explorer Georg Steller, who became the only naturalist to observe the birds in life. Following the colonization of the island by humans in the early 19th century, this species was hunted by humans, and it was driven to extinction in the 1850s. As there has been no record of the species outside Bering Island, it is considered to have been restricted to the island throughout its existence. Our new study in The Auk: Ornithological Advances, however, reports the first definitive record of the cormorant species outside Bering Island, demonstrating that the species was in fact not restricted to the island in the past.

Through our study of Japanese fossil birds, my colleagues and I identified 13 fossil bones of the Spectacled Cormorant from upper Pleistocene deposits (dated ~120,000 years ago) in Japan. The fossil bones were recovered from Shiriya, northeastern Japan, through excavations led by my co-author Yoshikazu Hasegawa of the Gunma Museum of Natural History. Through detailed examination of the bird fossils from the site, it became evident that a cormorant species much larger than any of the four native cormorant species in present-day Japan was represented in the material. At first, we suspected the presence of a new species, but this turned out not to be the case. Through a literature survey, I came across a 19th-century paper by American ornithologists Leonhard Stejneger and Frederic Lucas that described bones of the Spectacled Cormorant collected on Bering Island. The dimensions and illustrations given in the paper were strikingly similar to the Japanese fossils. I decided to visit the Smithsonian Institution’s National Museum of Natural History in Washington, D.C., where the bones described by Stejneger and Lucas are stored. After careful examination, the Japanese fossils turned out to agree in every detail with bones of the Spectacled Cormorant from Bering Island, rather than with any other species compared, to the extent that I was convinced that the Japanese fossils belong to the same species as the Bering Island bones.

The occurrence of the Spectacled Cormorant from Japan is the first definitive record of this species outside Bering Island and indicates that the species underwent a drastic range contraction or shift since the Pleistocene. In other words, the population of this species on Bering Island discovered by Steller was in fact a relict, with most of the species’ past distribution already lost. Changes in oceanographic conditions might be responsible for the local disappearance of the species in Japan; paleoclimate studies have shown that the oceanic productivity around Shiriya dropped drastically in the Last Glacial Maximum (~20,000 years ago), which would have seriously affected the population of the species. Although it might be possible that hunting of that species by humans took place in prehistoric Japan, no archaeological evidence for that is known so far. The entire picture of the recent extinction event of the Spectacled Cormorant might be more complex than previously thought, as is becoming evident for some other extinct seabirds in other parts of the world.

Further reading

Fuller, E. (2001). Extinct Birds, revised edition. Cornell University Press, New York, NY.

Hume, J. P. (2017). Extinct Birds, 2nd edn. Bloomsbury Natural History, London.


Welcome to the American Ornithological Society (AOS)
Advancing Scientific Knowledge and Conservation of Birds

© 2018 American Ornithological Society